Термины и определения ( Викопедия ).
Для контроля гипокапнии и
Гипокапни́я — состояние, вызванное недостаточностью СО2 в крови. Содержание
Гиперкапни́я — состояние, вызванное избыточным количеством CO2 в крови; отравление
Несмотря на малую токсичность самой углекислоты, её накопление сопровождается целым рядом патологических сдвигов и, сооответственно, симптомов. Кроме того, гиперкапния часто является первым признаком гиповентиляции и грядущей гипоксемии.
Гипервентиляция — интенсивное дыхание, которое превышает потребности организма в кислороде. Дыхание осуществляет газообмен между внешней средой и
Гипоксемия — представляет собой понижение содержания
Гипокси́я — состояние
«Безопасность и эффективность лечения больных в большой мере зависит от полноты динамической информации, которой располагает лечащий врач. Одним из важных источников такой информации нужно считать капнометрию - измерение концентрации углекислого газа в выдыхаемом воздухе. Совершенно не случайно капнометрия, наряду с пульсоксиметрией является обязательным спутником любой общей анестезии во многих развитых странах (Д.Б.Купер -91). Анестезиолог, работающий без применения этих методик, не будет защищаться страховыми компаниями в случае осложнений во время наркоза. С другой стороны, известно, что систематическое применение капнометра и пульсоксиметра во время общей анестезии в 2-3 раза снижает смертность «от наркоза».
По известным причинам серийного производства капнометров для медицинских целей в нашей стране пока не налажено. Но не только эта причина является препятствием на пути оснащения этими приборами анестезиологии-реаниматологии и других специальностей. Многое здесь зависит от малой осведомленности врачей о значении и информационных возможностях постоянного измерения концентрации СО2 в выдыхаемом воздухе. Именно эта невостребованность капнометров определила положение с ними в стране.
Отечественный опыт капнометрии в анестезиологии и реаниматологии, равно как и в других разделах медицины, основан только на применении быстродействующих моделей капнографов иностранного производства.
Методика с капнографом до настоящего времени многими врачами рассматривается, как “элитная”, необходимая лишь для научных исследований. Между тем, опыт капнометрии показывает её исключительное значение для практической медицины и особенно для практической анестезиологии и реаниматологии.
Настоящее сообщение имеет целью напомнить основные “вехи биографии” углекислоты в организме, пути ее транспорта, последствия различных нарушений элиминации двуокиси углерода, показать диагностические возможности динамического измерения концентрации СО2 в выдыхаемом воздухе.
Углекислота является важнейшим ингредиентом процессов окисления, образуется она в окислительном цикле Кребса. После своего образования молекула СО2 в клетках соединяется с калием, в плазме с натрием, в костях с кальцием. В крови около 5% общего количества углекислоты находится в растворенном состоянии в виде СО2 газа (99% и Н2СО3 1%). Основное количество углекислоты входит в состав бикарбоната натрия. В эритроцитах 2-10% СО2 находится в непосредственной связи с аминогруппами гемоглобина. Реакция отщепления СО2 от гемоглобина происходит очень быстро, без участия ферментов.
Все химические превращения СО2 в крови приводят к тому, что в альвеолах до 70% СО2 освобождается из бикарбоната натрия, 20% из карбонатов гемоглобина и 10% из углекислоты, растворенной в плазме. Участие легких в выведении СО2 делает эту систему очень реактивной, быстро реагирующей на изменения КЩС.
Подчеркнем несколько важных особенностей процессов образования и транспорта углекислоты системой кровообращения.
1. Интенсивность образования СО2 в организме пропорциональна активности обмена веществ, который, в свою очередь, непосредственно связан с активностью функции различных систем.
2. Поддержание физиологической концентрации СО2 в крови зависит от адекватности двух процессов, с одной стороны - продукции СО2, с другой - активности кровообращения. При недостаточности кровообращения концентрация СО2 в тканях растет, а концентрация СО2 в выдыхаемом воздухе уменьшается.
3. Регуляция СО2 крови является важной составляющей системы поддержания КЩС. Элиминация углекислоты, доставленной системой кровообращения в малый круг, целиком зависит от внешнего дыхания. При этом различные нарушения в этой системе могут привести к изменениям концентрации СО2 в крови за счет увеличения или уменьшения скорости выведения при дыхании Изменения напряжения ( концентрации ) углекислоты в артериальной крови (РаСО2) и в альвеолах (РАСО2) могут быть связаны с изменением вентиляции легких и с нарушениями вентиляционно-перфузионных отношений. Чаще всего эти параметры изменяются в связи с нарушениями легочной вентиляции (тотальной, но не локальной).
. Гиперкапния - газовый ацидоз.
Но даже в тех случаях, где РаО2 достаточно высоко для обеспечения потребностей организма в кислороде, гиперкапния может вызвать множество неприятностей, профилактика которых ( с помощью информации от капнометра ) предпочтительнее лечения.
Гипокапния - газовый алкалоз.
Гипокапния в связи с гипервентиляцией большинству авторов (Guedel-34,Gray a.ath-52,’Dundee-52) представлялись и представляются значительно меньшим злом, чем гиперкапния, особенно осложненная гипоксемией. Более того, еще не оставлен тезис о полной безвредности “умеренной гипервентиляции,” которой пользуются в большинстве клиник при ИВЛ (Geddas,Gray - 59).
Достаточно давно появились сомнения в правильности этого тезиса (Kitty,Schmdt -46). Постараемся убедить читателя в том, что эти сомнения имеют основания. Мысли о серьезных патологических сдвигах в связи с гипервентиляцией появились после катастроф и гибели пилотов при высотных полетах. Сначала пытались объяснить эти катастрофы развивающейся гипоксемией, однако вскоре было показано, что гипервентиляция чистым кислородом сопровождается снижением мозгового кровотока на 33-35% (Kram,Appel a.oth.-88) и нарастанием концентрации молочной кислоты в тканях мозга на 67%. Malette -58 Suqioka, Davis - 60 нашли снижение РО2 в ткани мозга у животных при гипервентиляции кислородом и воздухом. Те же данные были получены Allan a.oth.-60, который показал, что РаСО2 в 20 мм.рт.ст. сопровождается мозговой вазоконстрикцией и гипоксией мозга.
Frumin не наблюдал осложнений при гипервентиляции до 20мм рт.ст. РаСО2, однако и он отметил длительное апноэ в связи со снижением чувствительности дыхательного центра. Эта чувствительность снижается в значительно большей степени при гипервентиляции на фоне введения анестетиков. Гипоксия мозга при газовом алкалозе обусловлена не только сужением сосудов, но и так называемым эффектом Вериго-Бора. Состоит этот эффект в том, что снижение РаСО2 оказывает сильное влияние на кривую диссоциации оксигемоглобина, затрудняет эту диссоциацию. В результате, при хорошей оксигенации крови ткани испытывают кислородное голодание, поскольку кислород не выходит из связи с гемоглобином и не поступает в ткани (поступает в меньшем количестве, чем при нормальном РаСО2). Таким образом, снижение кровотока и затруднение диссоциации НbО2 являются причинами развития гипоксии и метаболического ацидоза в мозговой ткани (Сarryer - 47,Саноцкая - 62).
При сильной гипервентиляции (до 250% МОД) в ряде случаев отмечались изменения на ЭЭГ: появлялись дельта-волны, которые исчезали при добавлении в дыхательную смесь 6% СО2. Достаточно типичным было и замедление частоты колебаний на ЭЭГ до 6-8 в мин., т.е. появлялась симптоматика углубления наркоза (Буров - 63). Гипоксия мозга сопровождается аналгезией (Clatton-Brock - 57). Некоторые авторы аналгезию связывают с алкалозом (Robinson-61). Имеет место снижение активности ретикулярной формации (Bonvallet,Dell - 56). Bonvallet - 56, считал, что нормальный уровень углекислоты крови является необходимым условием для нормальной функции, как мезенцефального, так и бульбарного отделов ретикулярной формации (включая и дыхательный центр). Гипервентиляция и гипокапния угнетают активность ретикулярной формации, увеличивают вероятность развития эпилептических припадков.
Сосуды различных тканей по разному реагируют на гипокапнию. Сосуды мозга, кожи, почек, кишечника, - сужаются; сосуды мышц - расширяются (Burnum a.oth.-54, Eckstein a.oth.-58, Robinson - 62). Это сказывается на симптоматике гипокапнии. Вначале имеет место ярко-красная гиперемия шеи, лица, груди (5 -10мин.). В этот момент кожа теплая, сухая. Резко выражен красный дермографизм. Постепенно развивается бледность, сначала конечностей, затем лица. Снижается температура кожи. Дермографизм либо отсутствует, либо резко замедлен и ослаблен. При сильном периферическом вазоспазме кожа приобретает вид “восковой бледности”, сухая. При удлинении срока действия и углублении гипокапнии бледность кожи приобретает цианотичный оттенок. Картина напоминает централизацию кровообращения при гиповолемии. Аналогичен и конкретный механизм обоих нарушений периферического кровообращения. Можно говорить о “гипервентиляционном синдроме”: артериальная гипотензия, периферический вазоспазм, гипокапния. Чтобы отличить гиповолемическую централизацию от гипервентиляционного синдрома проще всего использовать исследование либо РаСО2, либо FetСО2. Лечение: дыхание смесью, содержащей 5% СО2 или значительное уменьшение минутной вентиляции легких.
Сужение сосудов почек при гипервентиляции приводит к снижению скорости диуреза и удлинению действия фармакологических препаратов. Достаточно типичным осложнением гипервентиляции можно считать увеличение мышечного тонуса вплоть до тетании. Уже умеренная гипервентиляция (150-250% МОД ) у 25% больных сопровождается повышением мышечного тонуса, у 40% больных наблюдается клонус стоп. Развитие этого осложнения связывают с алкалозом и дефицитом Са+. Выражением этого осложнения является т.н. симптом Труссо или “рука акушера”, а также икота - судорога диафрагмы. Повышенный мышечный тонус снимается введением СаСl2, хотя изменений концентрации Са,К,Na в плазме крови не отмечено (Буров -63). Чаще всего результатом гипервентиляции в анестезиологии бывает продленное апноэ. В его развитии, кроме гипокапнии, принимает участие и угнетение дыхательного центра аналгетиками и рефлекторные влияния с рецепторного аппарата легких и верхних дыхательных путей, но ведущей причиной, как правило, является гипокапния.
Здесь уместно вспомнить о давнем споре в литературе о связи режима ИВЛ с длительностью действия релаксантов. Еще во времена Guedel считалось, что гипервентиляция удлиняет срок действия релаксантов. Соответствует ли это утверждение действительности? Мы считаем, что не соответствует, и вот почему. Известно, что гипервентиляция и гипокапния приводят к снижению кровотока в мозгу вплоть до развития гипоксии мозга. Это приводит к снижению активности мозга, в том числе и дыхательного центра, что и является причиной длительного апноэ, которое принимается за результат действия релаксантов. Дыхание смесью, содержащей 5% СО2 в течение 1-2-х минут восстанавливает самостоятельное дыхание. Мышечная активность конечностей проявляется раньше, чем активность дыхательных мышц и диафрагмы. Этот факт также говорит не в пользу связи продленного апноэ с действием релаксантов. Расширение сосудистой сети мышц при гипервентиляции позволяет предположить ускоренную инактивацию мышечных релаксантов в условиях гипокапнии. Период релаксации мышц сокращается и благодаря имеющейся тенденции к мышечному гипертонусу при гипервентиляции и алкалозе. Мы считаем, что уже перечисленных факторов достаточно, чтобы убедиться в необходимости более точного определения, а главное соблюдения принципа “умеренной гипервентиляции” не на глазок, не по стандарту, а по данным капнометрии.
Врачи многих медицинских специальностей могут получать полезную динамическую информацию с помощью капнометра. Более других в этой информации нуждаются анестезиологи-реаниматологи. Рассмотрим некоторые аспекты использования капнометрии, как источника информации. При поступлении больного на операционный стол или в палату реанимации уже однократное измерение концентрации СО2 в конце выдоха -FetСО2 - может дать полезные сведения об общем состоянии больного, об интенсивности патологического процесса (конечно, наряду с данными о КЩС,РаО2, РаСО2). При низкой FetСО2 (менее 4%) можно говорить о повышенной потребности в кислороде и одышке, вызывающей гипокапнию. Увеличение FetСО2 (до 6 и более %) позволяет заподозрить дыхательную недостаточность, связанную с угнетением дыхательного центра или с повреждением аппарата внешнего дыхания. Более точные сведения об уровне обмена пациента можно получить при измерении средней концентрации СО2 в выдыхаемом воздухе (собранном в ёмкость). Некоторые модели капнометров дают возможность определить среднюю концентрацию СО2 без сбора выдыхаемого воздуха. В любом случае, увеличение выделения, а следовательно и продукции СО2 говорит о большей активности обменных реакций…….
Второй вопрос о необходимости высокого уровня СО2 для восстановления работы дыхательного центра. Этот факт отмечают многие авторы и наблюдает каждый анестезиолог, использующий при работе капнометр. Объяснение обсуждаемого феномена, на наш взгляд, возможно только одно. Гипервентиляция и гипокапния, как уже отмечалось, приводят к уменьшению мозгового кровотока с более или менее выраженной гипоксией мозга. Именно это обстоятельство снижает дееспособность и чувствительность дыхательного центра к СО2. Поэтому его работа может быть стимулирована повышенной по сравнению с нормой концентрацией СО2 в крови. Очень скоро, в течение минут после подъема FetСО2, кровоток в сосудах мозга нормализуется, признаки гипоксии купируются и дыхательный центр “настраивается” на нормальный уровень СО2 в крови.
Из сказанного можно сделать важный практический вывод: не нужно бояться относительно небольшого и кратковременного повышения FetСО2, необходимого для восстановления нормальной работы дыхательного центра и адекватного самостоятельного дыхания.
После восстановления самостоятельного дыхания нужно выяснить его достаточность для газообмена. Это легко сделать по показаниям капнометра. Если FetСО2 установилось в пределах 4-5,5% можно говорить, что вентиляционной недостаточности нет и решать вопрос об экстубации и продленной ингаляции смесью, обогащенной кислородом на основании показаний пульсоксиметра.
Желательно и после экстубации убедится в стабильности уровня FetСО2 и лишь тогда можно считать, что декураризация состоялась и угнетения дыхательного центра нет.
Перевод больного в отделение реанимации не снимает надобности в капнометрическом контроле. Этот контроль поможет вовремя диагностировать развившуюся вентиляционную дыхательную недостаточность, выявить и устранить ее причину. Капнометрия позволяет диагностировать и паренхиматозную дыхательную недостаточность по гипервентиляции и снижению FetСО2. Таким образом, можно предположить гипоксемию, связанную с обтурацией бронха и шунтированием части легочного кровотока»……
Как видно, поддержание СО2 в артериальной крови человека – это жизненно необходимая процедура. А почему это не делается у нас соответствующими специалистами, не понятно.
Свежие комментарии